

MODELISATION DES EFFORTS

Frottement de glissement - Modèle de Coulomb

1 - PREAMBULE

Le frottement est constaté dans deux principaux cas :

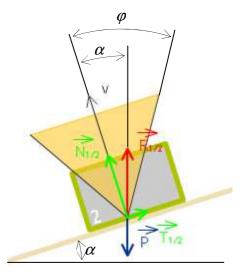
- ⇒ Frottement solide: lorsque deux solides en contact ont un mouvement relatif.
- ⇒ Frottement fluide : lorsqu'un corps solide est dans un milieu fluide (liquide ou gazeux).

Seul le premier cas est traité ici. Le frottement, toujours dissipatif d'un point de vue énergétique, trouve son siège dans la rugosité des surfaces en contact et dans leur rapport physico-chimiques.

2 – MISE EN EVIDENCE DU PHENOMENE DE FROTTEMENT

L'action du plan (1) sur la boite (2) est notée $\overrightarrow{R_{I/2}}$. Elle se décompose en deux composantes:

- $\Rightarrow \overrightarrow{T_{1/2}}$, composante tangentielle (dans le plan de contact)
- $\Rightarrow \overrightarrow{N_{I/2}}$, composante normale (perpendiculaire au plan de contact)


On a donc :
$$\overrightarrow{R_{1/2}} = \overrightarrow{N_{1/2}} + \overrightarrow{T_{1/2}}$$
.

La boite étant soumise à deux forces, \overrightarrow{P} et $\overrightarrow{R_{1/2}}$, son équilibre implique qu'elles soient directement opposées (voir PFS 2 forces); ainsi, plus l'angle d'inclinaison lpha augmente, plus la réaction $R_{1/2}$ s'incline / au plan. Il apparaît alors une valeur limite de α ; soit φ cette limite.

$$\Rightarrow$$
 Si $\alpha > \varphi$, la boite (2) glisse : il n'y a plus équilibre.

On constate expérimentalement que la limite φ ne dépend pas du poids \overrightarrow{P} de la boite mais uniquement de la nature des matériaux qui participent au contact de (1) et (2).

3 - COEFFICIENT DE FROTTEMENT - LOI DE COULOMB

L'angle limite φ correspond sur la figure au demi-angle du cône (le cône de frottement).

La géométrie de la situation donne $\tan \varphi = \frac{T_{1/2}}{N_{1/2}}$; en posant $f = \tan \varphi$, on la **loi de Coulomb** : $T = N \cdot f$

f s'appelle le coefficient de frottement, sans unité. Plus il est grand, plus il y a de frottement.

Couples de matériaux	Conditions : Lubrification – température - pression	f
Acier / Fonte	Surfaces sèches	0,19
Acier / Bronze	Surfaces grasses / Surfaces graissées	0,16 / 0,10
Fonte / Bronze	Surfaces sèches	0,21
Fonte / Fonte	Surfaces grasses / Surfaces graissées	0,15 / 0,05 - 0,10
Acier trempé / Bronze	Graissage moyen / Graissage sous pression	0,10 / 0,05
Acier trempé / Acier trempé	Graissage moyen / abondant / sous pression	0,10 / 0,07 / 0,05
Garniture amiantée pour freins d'automobile / Fonte	Sèches – Tmax. 140° C - Pression de contact 0,2 à 0,6	0,35 - 0,40
Garniture métallique frittée / Acier	MPa	0,10 - 0,20
	Sèches – Tmax. 300° C - Pression de contact 0,2 à 1	
	MPa	
Coussinet fritté (bronze + acier) / Acier	Lubrifiées à l'huile / à la graisse	0,01 / 0,05
Matières plastiques (toutes natures)	Surfaces lubrifiées	0,02 - 0,08
Polyamide 6; 6-6; 6-10 / Acier	Surfaces sèches	0,38 - 0,42
Pneus / Route goudronnée	Route sèche / mouillée / verglacée	0,60 - 0,70 / 0,35 - 0.60 / 0,10